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DFSCRIPTION AM) PERFORMANCE OF THREE TRAILBLAZER I1 

REENTRY RESEARCH VEHICIIES 

By Reginald R .  Lundstrom, Allen B.  Henning, 
and W .  Ray Hook 

Langley Research Center 

The physics of bodies reentering t h e  ear th ' s  atmosphere a t  hypersonic 
speeds i s  t h e  subject of extensive investigation. 
reentry causes t h e  a i r  surrounding t h e  body t o  be heated t o  a very high tempera- 
ture. The proper t ies  of  high-temperature a i r  a r e  known ( f o r  example, see 
re fs .  1 and 2 ) ,  and relatively standard methods a r e  avai lable  f o r  computing t h e  
temperature and density d is t r ibu t ions  of the a i r  surrounding t h e  body if t h e  a i r  
i s  i n  chemical equilibrium. It i s  suspected tha t  i n  the  case of bodies reen- 
t e r ing  a t  speeds of about 20,000 f t / sec  and a t  a near v e r t i c a l  angle, the  a i r  
surrounding a body and i n  t h e  wake i s  not i n  chemical equilibrium. 
remains t o  be learned about t he  conditions causing t r a n s i t i o n  from laminar t o  
turbulent  flow, pa r t i cu la r ly  i n  the  wake. The dissociat ion o r  ionizat ion 
r e su l t i ng  from this high-temperature a i r  often makes an object  appear much 
l a rge r  when viewed by radar than it would appear from ordinary s t a t i c  radar 
cross-section measurements. This phenomenon i s  known as  radar enhancement. 
Since t h e  wake i s  generally very la rge  compared with t h e  body, it i s  believed 
t o  be t h e  major contr ibutor  t o  t h i s  radar enhancement phenomenon. 

It i s  wel l  known t h a t  t he  

Also, much 
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SUMMARY 
I -  :' t; 

A descr ipt ion of t he  Trai lblazer  I1 reentry physics research vehicle capa- 
b l e  of reenter ing a 40-pound payload in to  the atmosphere a t  20,000 f t / sec  i s  
presented together with the  description and resu l t s  of th ree  f l i g h t  t e s t s .  The 
vehicle  proved t o  be a workable system during f l i g h t  t e s t s  by accomplishing the  
objective of reentering a prescribed payload. The dispersion of t he  impact 
points  of t he  various stages was within the  expected limits except t h a t  t he  
f i r s t - s t age  impact w a s  much c loser  t o  the  launch point  than was or ig ina l ly  
expected. Approximate wobble motions of t h e  spinning body a t  various times 
were determined from telemetered quant i t ies .  
chamber pressure t i m e  h i s tory  of t h e  third-stage rocket motor and t h e  th rus t  
t i m e  h i s tory  of the  fourth-stage rocket motor from t h e  telemetry car r ied  on- 
board some of t h e  vehicles.  The thrust and pressure curves indicated tha t  t he  
th rus t  w a s  lower during the  first pa r t  of the  th rus t  period and higher during 
t h e  l a t t e r  p a r t  of t he  th rus t  period than the  values expected f o r  a nonspinning 

It w a s  possible  t o  determine the  

motor. 

INTRODUCTION 



I n  order t o  study radar enhancement and other  reentry phenomena under con- 
d i t i ons  tha t  cannot be obtained i n  laboratory f a c i l i t i e s ,  high-speed reentry 
in to  the  atmosphere can be obtained by t h e  use of ICBM type vehicles or vehicles 
which have o r b i t a l  capab i l i t i e s .  Actually, t h e  use of such large vehicles f o r  
reentry study i s  l imited because of t h e  geographical reentry location and high 
cost .  A solid-fuel rocket system, known as Trai lblazer ,  has been designed by 
the NASA Langley Research Center t o  perform experimental reentry research by 
reentering a high-speed tes t  object i n to  the  atmosphere near t he  launch s i t e  a t  
a fract ion of the cost  of ICBM type vehicles.  I n  the  case of the vehicles pre- 
sented herein, which were launched from t h e  NASA Wallops Stat ion,  reentering 
the  t e s t  object close t o  t h e  launch s i t e  permitted a l l  the ground reentry moni- 
tor ing instrumentation t o  be located within 200 miles from the launch s i t e  and 
l e s s  than 100 m i l e s  from the  reentry event. 

The Trai lblazer  program i s  a cooperative enterpr ise  between t h e  NASA and 
the  Massachusetts I n s t i t u t e  of Technology - Lincoln Laboratory t o  invest igate  
the atmospheric reentry phenomena by using rocket-powered f ree- f l igh t  models. 
The reentry objects reenter t he  atmosphere a t  about 20,000 f t / s ec  and a r e  
tracked with radars and viewed with ground-based o p t i c a l  equipment. The f i r s t  
of these vehicles, cal led Trai lblazer  I, i s  described i n  reference 3. Because 
the weight of the reentry object w a s  l imited t o  about 2 pounds, very l i t t l e  
weight was available f o r  instrumentation or f o r  heat protection t o  permit sur- 
v i v a l  t o  a moderately low a l t i t u d e .  The Trai lblazer  I1 i s  a la rger  vehicle 
capable o f  boosting a 40-pound object t o  reentry ve loc i t ies  of 20,000 f t / s ec .  
The larger payload weight permits enough heat protection f o r  payload survival 
below an  a l t i t u d e  of 100,000 f e e t  and a s igni f icant  amount of instrumentation. 

Trailblazer I1 i s  primarily a four-stage vehicle with the  t h i r d  and fourth 
stages facing rearward a t  launch and f i r e d  a f t e r  apogee i s  reached. This 
arrangement permits reentry near enough t o  t h e  launch point so that it may be 
eas i ly  observed with land-based radar and o p t i c a l  equipment. Launchings a r e  
made only on very c l ea r  nights,  when there  i s  no moon, i n  order t o  obtain maxi- 
mum op t i ca l  coverage. 

This report presents a description of t he  f l i g h t s  of three Trai lblazer  I1 
t e s t  vehicles with d i f fe ren t  types of payloads. 
was instrumented primarily t o  obtain data on the operation of the vehicle  as a 
system. 
payload. 
p e l l e t  a t  about 40,000 f t / sec .  
Trailblazer I vehicle i s  reported i n  references 4 and 5 .  
Trailblazer I I d  w a s  a s o l i d  beryllium sphere. 
from the fourth-stage motor a f t e r  t h e  t h r u s t  period was completed, and then the  
expended-fourth-stage motor-case and adapter combination w a s  slowed down with a 
ret ro - rocket . 

The f i r s t ,  Trai lblazer  IIa,  

I n  t h i s  vehicle t he  fourth-stage motor w a s  an i n t e g r a l  p a r t  of t he  
Trailblazer I I b  used a t o t a l  of s i x  stages t o  reenter a small s t e e l  

A q u i t e  similar experiment performed on a 
The payload of 

The sphere w a s  spring ejected 

The vehicles were launched a t  t he  NASA Wallops Stat ion,  Wallops Island, 
Virginia. 
ment of both the NASA and the  Lincoln Laboratory. 

Data acquis i t ion and analysis  were performed by personnel and equip- 
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. 
SYMBOLS 

If conversion t o  t h e  metric system i s  desired, t h e  following relat ionships  
apply: 1 in terna t iona l  foot  = 0.3048 meter and 1 pound = 0.4336 kilogram. 

axial-force coeff ic ient ,  Axial force 

Rolling moment 
qSd 

rolling-moment coef f ic ien t ,  

ac 7 - c  damping-in-roll der ivat ive,  

a c 2  
# as r o l l  der ivat ive,  -, per deg 

pitching-moment coeff ic ient  ab out center of gravi ty  , Pitching moment 
qSd 

damping-in-pitch der ivat ive,  

damping due t o  downwash l a g  on t a i l ,  

normal-force coef f ic ien t  , Normal force 
qs 

a C N  slope of normal-force-coefficient curve, -, per  radian 
aa 

reference diameter, f t  

moment of i n e r t i a  i n  p i t ch  or  yaw, slug-ft2 

moment of i n e r t i a  i n  roll, slug-ft* 

Mach number 

r o l l i n g  veloci ty ,  radianslsec 

dynamic pressure,  lb / sq  ft 

3 



9 '  

S 

t 

v 

pi tching veloci ty ,  radianslsec 

reference area,  sq f t  

time, sec 

veloci ty ,  f t / s e c  

xCP 

a 

Y 

'd 

6 

e 

vehicle center of pressure, f t  from nose 

angle of a t tack ,  radians 

f l ight-path angle, deg 

angle between f l i g h t  path of reentering object  and plane of outgoing 
t ra jec tory ,  posi t ive t o  r igh t  and negative t o  l e f t  of outgoing 
t r a j ec to ry  

f i n  def lect ion,  deg # 

vehicle a t t i t u d e  angle, deg 

A dot  over a symbol ind ica tes  t he  f i r s t  der ivat ive with respect t o  time. 

V E H I C U  DESCRIPTION AND TESTS 

Vehicle Description 

Trai lblazer  I1 i s  an unguided sol id-fuel  rocket system containing four  bas ic  
s tages .  A s  many a s  two addi t ional  stages,  depending on payload requirements, 
have been added. I n  pr inc ip le ,  Trai lblazer  11 i s  s imilar  t o  Tra i lb lazer  I i n  
that the upper stage motors a re  enclosed i n  a s t ruc tu ra l  she l l ,  ca l led  t h e  
veloci ty  package, and face rearward a t  launch. The f i r s t  two stages a re  used 
t o  obtain the desired apogee. The second-stage f i n s  a re  canted t o  produce a 
spin ra te  of about 10 r p s  which i s  suf f ic ien t  t o  spin s t a b i l i z e  t h e  vehicle  
within a small coning angle while above 150,000 f e e t .  
250,000 f e e t  the  ve loc i ty  package i s  ejected from the  expended second stage with 
a velocity increment of 8 t o  10 f t / s e c .  
expended second stage and the  ve loc i ty  package being separated a t  apogee by 
approximately 2,000 t o  3,000 f e e t  i n  s l a n t  range from t h e  radars. 
by experience with Trai lblazer  I t h a t  the  chances of radar  tracking the  unwanted 
object  are minimized i f  the second stage and ve loc i ty  package a re  about 
2,300 fee t  apar t  when the  t h i r d  stage f i r e s  shor t ly  a f t e r  apogee. 
stage propels the downward-firing stages out of the  open end of the  velocity- 
package skin. 
desired reentry veloci ty .  

A t  an a l t i t u d e  of about 

This ve loc i ty  increment r e s u l t s  i n  the  

It was found 

The t h i r d  

The f i r i n g  of the remaining stages dr ives  the  payload t o  i t s  
A sketch of t h e  vehicle i s  shown i n  f igure  1. 

Vehicle components.- The f i r s t  s tage cons is t s  of  a Castor XM33E8 sol id-  
f u e l  rocket motor capable of producing about 33,000 pounds of t h r u s t  f o r  
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30 seconds. Attached t o  the s ide of the  f i r s t - s t age  motor a r e  two Recruit XMlgEl 
sol id-fuel  rocket motors , which together produce an addi t iona l  60,000 pounds of 
t h r u s t  f o r  about 1 .7  seconds. 
s i b l e  t o  reach a forward veloci ty  of about 300 f t / s e c  2 seconds a f t e r  launch, a 
f a c t  which markedly decreases the  impact dispersion due t o  winds.  The f i r s t -  
stage f i n s ,  f i gu re  2, have an exposed area of 12 square f e e t  per panel and are  
made of cas t  magnesium with a leading-edge cap of 0.031-inch-thick inconel t o  
protect  them from the  aerodynamic heating. The f i n s  were bolted t o  a cast  mag- 
nesium shroud and, by elongating the  bo l t  holes s l i gh t ly ,  it was possible t o  
adjust  t he  incidence of t he  f i n  with respect t o  the  motor center l i n e  t o  gener- 
a l l y  l e s s  than 0.05O. 
Marman clamp arrangement containing four explosive b o l t s .  These explosive b o l t s  
a r e  ign i ted  by a timer-controlled dual igni t ion system with t imers se t  fo r  igni-  
t i o n  a t  35.5 seconds a f t e r  launch. 
by e i t h e r  one of the  t imers i s  suf f ic ien t  t o  re lease the clamp. 

The addition of these assist motors makes it pos- 

The f i rs t  and second stages a re  held together with a 

Igni t ion  of any one of the  explosive b o l t s  

I The second-stage rocket motor i s  a Skat XM43 capable of producing about 
43,000 pounds of thrust f o r  approximately 6 seconds. 
accomplished by the act ion of a 0.30-second delay squib switch system, which i s  
i n i t i a t e d  by t h e  same timer contact t h a t  f i r e s  the explosive b o l t s .  

delay time between f i r s t - s t a g e  burnout and second-stage ign i t ion  but  adequate 
t o  prevent i gn i t i on  of the  second stage pr ior  t o  re lease of t he  clamp. The 
second-stage f i n s  have an exposed area of 4 square f e e t  per panel and a r e  made 
of cas t  aluminum a l loy .  Since t h e  aerodynamic heating of the second-stage f i n s  
i s  appreciably more severe than t h a t  of the f i r s t - s t age  f i n s ,  the  leading edge 
i s  blunted and made of sol id  inconel f o r  the  f i r s t  0.7 inch. Inconel f langes 
0.080 inch th i ck  extend back 2 inches from the leading edge. A s  shown i n  f i g -  
ure 2 the  f i n  cross  section p a r a l l e l  t o  the  rocket center  l i n e  i s  a 4' wedge. 
The f i n s  a r e  bol ted t o  the  shroud; i n  order t o  r o l l  the  vehicle clockwise, a s  
viewed from the rear ,  the f i n s  on Trai lblazers  I I a  and IT0 have a nominal cant 
angle of 1.50' and those on Trai lblazer  I I d ,  1.73'. The holes i n  t he  f i n  root 
f i t t i n g s  a re  s lo t t ed  t o  permit a possible k0.670 adjustment about t h i s  nominal 
cant angle, which made it possible t o  obtain the desired f i n  s e t t i ng  within 
k0.05'. 

Ign i t ion  of the motor i s  ' 
1 believed t h a t  t h i s  method of second-stage ign i t ion  would provide f o r  a short  
1 

It was 

I 

I 

I The velocity-package skin cons is t s  of two s t a in l e s s - s t ee l  tubes, a magne- 
sium third-s tage separation housing, and a blunted conical nose section made of 
s t a i n l e s s  s t e e l .  The connector r ings joining these sections together a re  made 

1 of cas t  magnesium. Inside the veloci ty  package are s i x  equally spaced guide 
ra i l s  (see f i g .  l ( c ) ) ,  which run the  length of the a f t  s t a in l e s s - s t ee l  tube and 
serve as a guide during the e x i t  of the  upper stages out t he  open end of t he  
velocity-package skin. The forward s t a in l e s s - s t ee l  tube contains an inner  mag- 
nesium tube which serves as a heat shield f o r  t he  t h i r d  stage and guides the  
t h i r d  stage t o  t h e  guide rails .  The guide r a i l s  and tube also add considerably 

t o  the  S t i f fness  of t he  un i t .  Twenty eight  1--inch-diameter holes,  which may 

be seen i n  f igure  1, a r e  located a t  the  forward end of the  ve loc i ty  package i n  
the magnesium third-s tage separatj-on housing to  allow the  exhaust gases from 
t h e  burning of t h e  third-s tage motor t o  escape during the time it takes the  
upper stages t o  t r a v e l  the  length of the  velocity package. 

1 
2 

5 



The veloci ty  package i s  cut  off from the remainder of t h e  vehicle 62 sec- 
onds a f t e r  launch by a f l ex ib l e  l i n e a r  shaped charge placed circumferentially 
around the velocity-package skin a t  about s ta t ion  151. Two circumferential  
pieces of t h i s  shaped charge placed about an inch apart  are  used. Ei ther  of 
these pieces o r  sections i s  capable of severing the  veloci ty  package from the 
r e s t  of t he  vehicle .  Each section of t he  shaped charge i s  equipped with i t s  
own detonators and ign i t ion  system i n  order t o  give greater  r e l i a b i l i t y .  

A t  the  severed s t a t ion  t h e  velocity-package skin i s  made of 0.18-inch-thick 
magnesium and recessed so t h a t  t h e  diameter i s  about an inch l e s s  than the  diam- 
eter ahead of and behind t h i s  s ta t ion .  The detonators and shaped charge were 
placed i n  this recessed section t o  prevent the  poss ib i l i t y  of aerodynamic heating 
se t t i ng  off the  detonators. The outside of t he  velocity-package skin w a s  made 
smooth by covering t h i s  recess with a f iber-glass  band. The shaped charge was 
ac tua l ly  bonded t o  the outside circumference of a heavy 4130 s t e e l  r ing  tha t  
f i t t e d  closely inside the  magnesium cast ing a t  about s t a t ion  131. This wide 
s t e e l  ring served as a mounting p l a t e  f o r  the  shaped charge and a l so  insured 
that no metal fragments from the detonation of t he  shaped charge would in jure  
components inside the  veloci ty  package. After t h e  skin has been severed a la rge  
bellows assembly pressurized t o  about 415 lb/sq i n .  and having a t r ave l  of about 
1.5 inches separates the  ve loc i ty  package from the  expended second stage with a 
d i f f e ren t i a l  ve loc i ty  of about 8 f t / s e c .  
r ing  remain with the  second stage leaving the  end of t he  ve loc i ty  package open 
with nothing t o  obstruct the  e x i t  of t h e  downward-firing stages.  

The bellows and shaped-charge mounting 

The third-stage rocket motor, which f i t s  inside the  aforementioned heat- 
shield tube, i s  attached t o  t h e  velocity-package s h e l l  with a Marman clamp 
arrangement. The clamp i s  released by the axial motion of a push p l a t e  actuated 
by t h e  exhaust b l a s t  from third-stage ign i t ion .  The third-s tage rocket motor i s  
an Altair  IX248Al0, which produces about 3,000 pounds of t h rus t  f o r  about 39 sec- 
onds. This motor, which has a f iber-glass  case, was covered with an aluminum- 
coated tape t o  improve i t s  radar r e f l e c t i v i t y .  A sketch of t h e  t h i r d  stage with 
various payload mountings i s  shown i n  f igure  3 .  Magnesium guide r ings are 
ins ta l led  a t  the  forward and rearward t h r u s t  faces  of t he  rocket case t o  prevent 
t he  fiber-glass rocket case from coming i n  contact with the  guide r a i l s  and 
tube. 
igni t ion system which i s  act ivated a t  velocity-package separation. 

The motor i s  igni ted af ter  apogee a t  330 seconds a f t e r  launch by a dual 

The fourth-stage rocket motor i s  a 15-inch-diameter spherical  rocket motor 
designated Cygnus 15, which was developed a t  t he  NASA Langley Research Center. 
It develops about 3,000 pounds of t h rus t  f o r  4.8 seconds. 
i s  attached t o  the  adapter connecting the  t h i r d  and four th  stages by a diaphragm 
threaded t o  the nozzle ex i t  cone; t h e  diaphragm i s  released by ign i t ion  of the  
fourth stage. 
ign i t ion  system a t  about 308 seconds a f t e r  velocity-package separation o r  
370 seconds after launch. 
was part  of the payload. 
motor case was separated from the  payload and reentered separately.  
description of t h i s  i s  given i n  the  section e n t i t l e d  "Payloads." 

The fourth-stage motor 

Igni t ion  of the fourth-stage motor i s  accomplished by a dual 

I n  Trailblazer IIa t h e  Cygnus 13 rocket-motor case 
I n  Tra i lb lazers  I I b  and I I d ,  t he  fourth-stage rocket- 

Further 

I n  Trai lblazer  I I b  a 3-inch-diameter spherical  rocket motor designated 
Cygnus 5 was used a s  t h e  f i f t h  stage.  This motor, a l so  devel9ped a t  t he  NASA 
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Langley Research Center, produces about 530 pounds of t h rus t  f o r  1.6 seconds. 
Cygnus 5 was a l s o  used a s  a retro-rocket i n  Trai lblazer  I I d .  Sketches of the 
reentry stages f o r  the  three  vehicles are  presented i n  f igure 4 and photographs, 
i n  f igure  5. 

Vehicle charac te r i s t ics . -  Weights of the vehicles  a t  various events through- 
out the f l i g h t  a r e  presented i n  tab le  I along with the  corresponding center-of- 
grav i ty  posi t ions and t h e  moments of i n e r t i a .  
weights. 
measured weights and center-of-gravity posit ions f o r  the separate stages.  I n  
most cases the  moments of i n e r t i a  a t  and af ter  fourth-stage ign i t ion  were meas- 
ured. 
generally estimated. 

The weights l i s t e d  a re  measured 
The combined center-of-gravity posi t ions were calculated from the  

For events p r i o r  t o  fourth-stage igni t ion,  the  moinents of i n e r t i a  a re  

Aerodynamic parameters f o r  the complete vehicle and f o r  the second-stage 
and velocity-package combination a r e  l i s t e d  in  t ab le  11. 
axial-force,  and pitching-moment coeff ic ients  were determined by using the method 
of reference 6 with s l i gh t  adjustments made t o  agree with the  measured values of 
references 7 and 8. Values f o r  C z  were estimated from the method presented 
i n  reference 9,  and values of C f romthe  method described i n  reference 10. 

The normal-force, 

P 
ms' 

Spin s t ab i l i za t ion . -  Sometime a f t e r  second-stage burnout and about the  time 
of velocity-package separation the vehicle makes the  t r ans i t i on  from aerodynamic 
s t a b i l i t y  t o  spin s t a b i l i t y .  The vehicle s t a r t s  t o  spin up as soon as the sec- 
ond stage i s  ign i ted .  A s  the  vehicle spin i s  increased grea te r  spin s t a b i l i t y  
i s  effected.  A t  the  same t i m e  the  vehicle i s  going out of the atmosphere qui te  
rapidly causing the  aerodynamic s t ab i l i z ing  moments t o  decrease qui te  rapidly.  
Also, since the vehicle i s  spun up aerodynamically, by means of canted f i n s ,  
the  r o l l i n g  moment decreases with the  decreasing atmospheric pressure a f t e r  
second-stage burnout and t h e  r o l l i n g  veloci ty  gradually becomes constant with- 
out ever reaching the  steady-state value. 
the  calculated miss i le  response t o  an assumed second-stage thrust misalinement 
of 0.05' i s  presented as the  var ia t ion  i n  p i tch  a t t i t u d e  angle as a function of 
t i m e .  
tude angle does not drop off  as fast as the  f l igh t -pa th  angle because of the 
spin s t a b i l i t y .  
a t t i t u d e  angle remains e s sen t i a l ly  constant except f o r  the  small coning angle. 
Also shown i n  f igu re  6 i s  the p i t ch  a t t i t u d e  angle of t he  second stage and 
velocity-package combination a f t e r  62 seconds i f  velocity-package separation had 
not occurred. Calculations show t h a t  the spin r a t e  i s  e s sen t i a l ly  constant 
above 200,000 f e e t  u n t i l  the  t h i r d  stage ign i tes .  

This may be seen i n  f igure 6 where 

It may be noted i n  f igure  6 t h a t  a f t e r  about 60 seconds the  vehicle a t t i -  

After t he  ve loc i ty  package i s  ejected a t  62 seconds the  missile 

An increase i n  spin r a t e  of about 1 2  percent would be expected t o  occur 
during third-s tage burning and of about 25 percent during fourth-stage burning 
because some of t he  angular momentum of the burned propellant i s  t ransfer red  t o  
the unburned port ion of propellant before leaving t h e  nozzle. The phenomenon 
i s  discussed i n  reference 11 and the  estimates of t h e  amount of spin increase 
were calculated by using methods presented i n  this reference. 

Payloads.- The payloads used i n  these three vehicles  are  shown i n  f igures  4 
The payload of Trai lblazer  I I a  ( f i g .  4 ( a ) ) ,  which weighed 43.3 pounds, and 5 .  
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had a substructure of magnesium thorium a l loy  and was covered with an ab la t ing  
material .  
t h i ck  at the  stagnation point .  
epoxy polysulfide. 
to ry ,  down t o  an a l t i t u d e  of about 70,000 fee t .  
Trai lblazer  I Ia  f l i g h t  test were: 
obtain radar and op t i ca l  data  on the  reentry of t h i s  pa r t i cu la r  nose shape, and 
(3) t o  obtain some information on the  body motions of this vehicle and payload. 
The vehicle a l s o  carr ied an MIT - Lincoln Laboratory auxi l ia ry  experiment which 
consisted of the  l i g h t s  and the r e f l e c t o r  system shown i n  t he  back of the  pay- 
load i n  f igures  4 and 5. 

The nose section was made of phenolic nylon which was 0.30 inch 
The skirt was covered with 0.075-inch-thick 

The payload w a s  estimated t o  survive, f o r  a nominal t r a j ec -  
The ove ra l l  purposes of the  

(1) t o  check out t he  vehicle system, (2) t o  

T h i s  r e f l ec to r  a l so  serves as a telemeter antenna. 

The purpose of the  f l i g h t  t e s t s  of Trai lblazer  ID was t o  obtain op t i ca l  
data  on a small s t e e l  p e l l e t  of known mass reentering as an a r t i f i c i a l  meteoroid 
a t  a veloci ty  of about 47,000 f t / s e c .  The 
fourth-stage rocket motor had a s m a l l  threaded boss on the  f ron t  of the case 
which was used t o  hold the  adapter t o  support the  f i f t h - s t age  rocket motor. 
The f i n a l  stage was a high-energy accelerator  shown i n  f igure  4(b) which was 
expected t o  give a ve loc i ty  increment of 11,000 f t / s e c  t o  a s t e e l  p e l l e t  located 
i n  the  front  of t he  accelerator .  
was 2.2 grams 
accelerator  were very similar t o  those used f o r  a Tra i lb lazer  I t e s t .  
complete description of t he  accelerator  i s  presented i n  references 4 and 5. 

A t o t a l  of s i x  stages was used. 

The mass of the 5.8-gram pellet after f i r i n g  
0.1 g r a m  as determined by ground t e s t s .  The f i f t h  stage and 

A more 

The purpose of t h e  f l ight  t e s t  of Tra i lb lazer  I I d  w a s  t o  obtain radar and 

The sphere w a s  held i n  a 

These s t r aps  were lashed together with a piece of l / l6 - inch  air-  

op t i ca l  data  on a so l id  8-inch-diameter beryllium sphere weighing 17.8 pounds 
and reentering a t  a ve loc i ty  of about 20,000 f t / s ec .  
c lose- f i t t ing  hollow hemispherical cradle  by three spring s t e e l  s t r aps  
( f i g .  4 (c) ) .  
c r a f t  cable threaded through two squib-actuated reef ing cu t t e r s .  A t  t he  r ea r  
of t h e  beryllium sphere was a heavy s t e e l  spring having a spring constant of 
about 50 l b / in .  and one end fastened t o  the  adapter. 
spring, when compressed, res ted against  the  rearward part of the  sphere. T h i s  
arrangement was so constructed t h a t  ign i t ion  of e i t h e r  one of the  reef ing  cut-  
ters would cut t he  a i r c r a f t  cable and allow the s t e e l  s t r aps  t o  be released and 
t h e  spring t o  e j e c t  t he  sphere. 
has a veloci ty  8 t o  10 f t / s e c  g rea t e r  than the  expended fourth-stage rocket case 
and adapter. 
attached t o  the  adapter with the  nozzle facing forward; it was igni ted about 
4 seconds a f t e r  t he  e jec t ion  of the  payload. 
was expected t o  reduce the  ve loc i ty  of t he  fourth-stage-case and adapter combi- 
nation by 1,000 f t / sec ,  which should have allowed the  payload t o  be about 
20,000 f e e t  ahead of the expended rocket case a t  the  onset of reentry.  This 
distance was determined t o  be su f f i c i en t  f o r  the  radars  t o  t r ack  t h e  payload 
alone during the  reentry period. It was believed t h a t  the  rocket case would 
become opt ica l ly  v i s i b l e  a t  a much higher a l t i t u d e  than the  payload and a l s o  
t h a t  t ip-off  forces  from the coning motion during r e t r o f i r i n g  would displace the  
objec ts  su f f i c i en t ly  l a t e r a l l y  so t h a t  t h e  photographed reent ry  s t reaks would 
not appear t o  be i n  l i n e  o r  on top of one another from at  least one op t i ca l  
s t a t ion .  
be t h a t  a so l id  spherical  ba l l  could be used which would present t h e  same shape 
t o  the  f r ee  ai rs t ream no matter what the  or ien ta t ion  of t he  payload may be, and 

The other end of the 

The r e s u l t  of t h i s  act ion i s  t h a t  t he  sphere 

The f i f th -s tage  motor was used a s  a retro-rocket and w a s  r i g i d l y  

The f i r i n g  of t h i s  retro-rocket 

It was thought that the  p r inc ipa l  advantages f o r  t h i s  arrangement would 
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t h a t  there  would be no poss ib i l i t y  of contaminating the payload wake by any 
afterburning of the f i f th -s tage  rocket motor. Aerodynamic-heating calculat ions 
made on t h i s  payload indicate  tha t  it would probably survive t o  impact. Calcu- 
l a t i o n s  were a l so  made t o  see i f  t h i s  payload would be subjected t o  excessive 
thermal s t r e s s  during reentry,  which could cause it t o  break i n  pieces.  The 
calculat ions indicated no ill e f fec t s  would be expected from these thermal 
s t resses .  

Vehicle Instrumentation 

Tra i lb lazer  I I a  contained two separate telemetry systems. A telemeter 
using an FM-m system and operating on a car r ie r  frequency of 240.2 megacycles 
was located i n  the nose sect ion of the velocity package. I t s  purpose was t o  
provide bas ic  data on the  performance of the vehicle during the ascending por- 
t i o n  of the t r a j ec to ry ,  and the  instrument ranges were selected t o  provide data 
t h a t  could be usef'ul i n  determining the  cause of a vehicle f a i l u r e  i f  t ha t  event 
should occur. Instruments used f o r  t h i s  system were: 

Rate gyro ( r o l l )  . . . . . . . . . . . . . . . . . . . . . . . .  0 t o  13.9 rps  
Rate gyro (pi tch)  . . . . . . . . . . . . . . . . . . . . . . . . .  ?10O0/sec 
Rate gyro (yaw) . . . . . . . . . . . . . . . . . . . . . . . . . .  +lOOO/sec 

Accelerometer (Y-axis, transverse) . . . . . . . . . . . . . . . . . . .  k5g 

Magnetic aspect sensor . . . . . . . . . . . . . . . . . . . .  %OO mill igauss  
Velocity-package separation switches . . . . . . . . . . . . . .  0 t o  5 v o l t s  

Accelerometer ( X - a x i s ,  longitudinal;  posit ive g 
i n  d i rec t ion  of f i r s t - s t age  th rus t )  . . . . . . . . . . . . . . .  35g t o  -5g 

Accelerometer (Z-axis, normal) . . . . . . . . . . . . . . . . . . . . .  *>g 

The magnetic aspect sensor was ins ta l led  w i t h  i t s  axis 45' t o  the  vehicle 
I t s  primary function was t o  provide a backup f o r  the  r o l l -  longi tudinal  axis. 

r a t e  gyro a s  a method f o r  determining r o l l  ra te ,  but it was believed t h a t  it 
might a l so  be useful  i n  determining the  approximate magnitude of la rge  coning 
motions if they should occur. Three microswitches were located 120' apar t  on 
the velocity-package separation plane such that they would give an indicat ion 
when t h e  ve loc i ty  package separated. If the velocity-package skin was not com- 
p l e t e l y  severed by the  shaped charge, or  i f  there  was any tendency f o r  the veloc- 
i t y  package t o  tilt as it was ejected,  one of the switches would operate s l i g h t l y  
ahead of the  o thers  and it would be noticeable on the  telemeter record. 

Four s t e e l  rods near t he  nose of the veloci ty  package ( f i g .  1) were used 
During the  ascending portion of the  t r a j ec to ry  an e lec t ronic  1 

~ 

as the antenna. 
device cal led a diplexer was used t o  permit the payload telemeter and the per- 
formance telemeter t o  use the  same antenna system without in te r fe r ing  with each 
other .  After  third-s tage ign i t ion  the third-  and fourth-stage telemeters u t i -  
l i z e d  music-wire whip antennas which were folded inside the  veloci ty  package 
during the ascending t r a j ec to ry .  A coaxial  switch, actuated by the  opening of 
one of the  whip antennas, w a s  used t o  switch from one antenna system t o  the  
other .  

I n  Tra i lb lazer  I I a  a telemeter operating a t  244.3 megacycles was located 
i n  the nose of the  payload. Quant i t ies  transmitted were: 
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Accelerometer (X-axis, longitudinal;  negative g 
i n  direct ion of fourth-stage th rus t )  . . . . . . . . . . . . .  lOOg t o  -2Oog 

Accelerometer (Y-axis, transverse) . . . . . . . . . . . . . . . . . . .  +20g 
Accelerometer ( Z - a x i s ,  normal) . . . . . . . . . . . . . . . . . . . . .  k2Og 
Rate gyro (p i tch)  . . . . . . . . . . . . . . . . . . . . . . . . .  +400°/sec 
Rate gyro (yaw) . . . . . . . . . . . . . . . . . . . . . . . . . .  +4000/sec 
Rate gyro ( r o l l )  . . . . . . . . . . . . . . . . . . . . . . . .  0 t o  15 r p s  

One channel measured the  forward and reverse t ransmit ter  powers by use of a dual 
d i rec t iona l  coupler and a two-segment commutator. The instrument ranges were 
selected so tha t  they could be usefu l  i n  determining the cause of a booster 
f a i l u r e ,  i f  it had occurred, ra ther  than giving an accurate determination of 
moderate vehicle motions. 

Trai lblazer  IIb a l s o  contained two separate telemetry systems. One telem- 
e t e r  located i n  the nose of the  veloci ty  package was iden t i ca l  t o  that used on 
Trai lblazer  I I a .  The instruments, instrument ranges, and channel assignments 
were a l s o  the same. I n  t h i s  system two opposing s t e e l  rods were used fo r  each 
of the  two antenna systems instead of the  diplexer .  

The second telemeter, which w a s  located i n  the adapter connecting the 

The primary purpose of t h i s  telemeter was t o  monitor the 
t h i r d  and four th  stages,  was an FM-I34 system operating on a ca r r i e r  frequency 
Of 244.3 megacycles. 
operation of the  t h i r d  stage. The instruments and ranges were: 

Accelerometer (X-axis, longitudinal;  negative g 

Pressure transducer . . . . . . . . . . . . . . . . . .  i n  direct ion of third-s tage th rus t )  . . . . . . . . . . . . . . .  5g t o  -3% 
0 t o  600 lb / sq  in .  abs 

The pressure transducer measured the pressure ins ide  the chamber of the third-  
stage motor. 
were used a f t e r  the  downward-firing stages had emerged from the velocity-package 
she l l .  

Music-wire whip antennas s i m i l a r  t o  those used on Trai lblazer  I I a  

Trai lblazer  I I d  had three  complete telemetry systems. The telemetry system 
located i n  the nose of the  ve loc i ty  package was iden t i ca l  t o  that used f o r  
Trai lblazers  I I a  and I I b .  
t h e  t h i r d  and four th  stages w a s  similar t o  t h a t  used on Trai lblazer  IIb except 
t h a t  there were s ix  channels of information instead of two. These were: 

The 244.3-megacycle telemeter i n  the adapter joining 

Accelerometer ( X - a x i s  , longitudinal;  negative g 
i n  direct ion of third-stage th rus t )  . . . . . . . . . . . . . . .  5g t o  -3% 

Pressure transducer ( third-s tage rocket chamber) 0 t o  600 lb /sq  in .  abs 
Accelerometer (Y-axis, transverse) . . . . . . . . . . . . . . . . . . .  25g 
Accelerometer (Z-axis, normal) . . . . . . . . . . . . . . . . . . . . .  55g 
Magnetic aspect sensor no. 1 . . . . . . . . . . . . . . . .  S O 0  milligauss 

. . .  

Magnetic aspect sensor no. 2 . . . . . . . . . . . . . . . .  %OO milligauss 

The t h i r d  telemeter had a frequency of 256.2 megacycles and was in s t a l l ed  
i n  the  adapter between t h e  fourth-stage rocket motor and the payload. 
measured were : 

Quant i t ies  



Accelerometer ( X - a x i s ,  longitudinal;  negative g 
i n  direct ion of fourth-stage th rus t )  . . . . . . . . . . . . . .  3g t o  

Separation switch system . . . . . . . . . . . . . . . . . . . .  0 t o  5 vo l t s  

The main purpose of t h i s  telemeter was t o  monitor the  operation of the  fourth- 
stage rocket motor and the  payload e jec t ion  device. During the upward portion 
of the  f l i g h t  of Tra i lb lazer  I I d  two opposing s t e e l  rods served a s  the  antenna 
f o r  the 256.2-megacycle telemeter and the  other two rods served as t h e  antenna 
f o r  t he  240.2- and 244.3-megacycle telemeters with a diplexer arrangement. A 
s e t  of music-wire whip antennas i n  the  adapter joining the  third and four th  
stages and a s e t  i n  the adapter joining the fourth and f i f t h  stages served a s  
antennas f o r  t he  244.3- and 256.2-megacycle telemeters, respectively,  a f t e r  t he  
downward-firing stages had emerged from the  velocity-package she l l .  

The telemetry i n  a l l  vehicles was b u i l t  by or  under the supervision of 
Signals were recieved both by MIT - Lincoln Laboratory MIT - Lincoln Laboratory. 

a t  t h e i r  radar s i t e  a t  Arbuckle Neck, Assawoman, Virginia,  and by the NASA 
Wallops S ta t ion .  

Ground-Based Instrumentation 

Instrumentation external  t o  the  vehicle was used t o  determine the vehicle 
t r a j e c t o r i e s .  
f l i g h t  from launch through reentry.  
o p t i c a l  t racking during the  reentry phase of the  payload t ra jec tory .  

Five ground-based radars tracked the  vehicle f o r  portions of the  
Cameras a t  various ground s t a t ions  provided 

Radars operated by the  NASA Wallops Station and s i tua ted  i n  the v i c i n i t y  of 
t he  launching s i te  a re  the  SCR-584, FPS-16, modified SCR-Sh, and long-range 
S-band radar.  
t h e  FPS-16 (a C-band radar) a r e  short-range radars and a r e  not capable of 
t racking the  complete t r a j ec to ry  of the Trailblazer vehicles.  
t he  outgoing t r a j e c t o r y  these radars assist the long-range S-band radar i n  
acquiring the  vehicle  through an e lec t ronic  slaving system. The long-range 
radar w a s  expected t o  t rack  the vehicles through t h e i r  reentry phase and t o  
obtain per t inent  data  concerning the  reentry.  
Wallops Is land,  MIT - Lincoln Laboratory operated a long-range radar whose t rans-  
mit t ing frequencies were i n  the UBF, S-, and X-band ranges. T h i s  radar  was 
expected t o  t r ack  the  vehicle from launch through reentry and obtain cross- 
sect ion and posi t ion data  from the reentry i n  these three  frequency ranges. 
Cross-section da ta  from a l l  the MIT radar and from NASA long-range S-band radar 
a r e  recorded a t  t h e  MIT s i t e .  
long-range S-band radar had the capabi l i ty  of a iding each other i n  acquiring the  
object  t o  be tracked. 

The SCR-g4 and the  modified SCR-584 ( s m a l l  S-band radars) and 

While tracking 

Also a t  Arbuckle Neck, near 

The MIT - Lincoln Laboratory radar and the  NASA 

Reentry t racking  i s  also accomplished by using op t i ca l  equipment. B a l l i s -  
t i c ,  meteor, and modified a e r i a l  cameras a r e  used a t  various down-range s t a t ions .  
These cameras take  photograph6 of the  luminous t rack  t h a t  the  high-speed payload 
produces as it reenters  t he  atmosphere. Streak photographs, time-chopped s t reak 
photographs, and spectrographs of t he  v is ib le  t r ack  taken during reentry pro- 
vided reentry da t a .  
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Prelaunch Tests 

I n  an e f f o r t  t o  minimize flight f a i l u r e s  many environmental t e s t s  were made 
of various vehicle components. The following prelaunch t e s t s  were performed: 

( a )  Wind-tunnel tests t o  check estimated aerodynamic parameters f o r  t he  
vehicle  a re  described i n  references 7 and 8. 
ducted for  the payload of Trai lblazer  I I a .  

Wind-tunnel t e s t s  were a l so  con- 

(b)  Load t e s t i n g  of various f i n s ,  shrouds, and adapters w a s  made t o  insure 
t h a t  they would carry loads t h a t  might occur during f l i g h t .  
f o r  reduced strength during aerodynamic heating, the e f f e c t  was calculated and 
a proportionally la rger  load applied t o  the  nonheated s t ruc ture .  

I n  order t o  account 

( e )  The na tura l  s t ruc tu ra l  frequencies of the vehicles corresponding t o  the  
conditions a t  second-stage ign i t ion  and second-stage burnout were determined 
experimentally. All payloads and adapters were subjected t o  accelerat ions and 
vibrat ions corresponding t o  those t h a t  m i g h t  be encountered during third-s tage 
t h r u s t  o r  the most severe conditions t h a t  a r e  expected t o  be experienced during 
t h e  f l i g h t .  

( d )  Several t e s t s  were performed on t h e  velocity-package separation system. 
The t e s t s  insured t h a t  t h e  shaped-charge cut was complete and that the  s t e e l  
mounting r i n g  adequately protected vulnerable p a r t s  from f ly ing  metal fragments. 

( e )  Several t e s t s  were made t o  insure t h a t  the t h i r d  and four th  stages 
emerged properly from the velocity-package skin during third-s tage ign i t ion .  
For these t e s t s  t he  third-stage case was ba l las ted  t o  the proper weight and 
f i t t e d  with an i g n i t e r  and a charge whose burning gave the same cha rac t e r i s t i c s  
as the  f i r s t  half  second of third-s tage burning. This motor was i n s t a l l e d  i n  a 
veloci ty  package with the  mechanical system used i n  a f l i g h t  t e s t .  
package was placed on a set of r a i l s  f o r  t e s t i n g  so t h a t  both t h e  veloci ty-  
package skin and the third-s tage motor would be f r e e  t o  move during the  t e s t .  

The ve loc i ty  

( f )  The fourth-stage rocket motor w a s  mounted i n  a f l i g h t  t e s t  vehicle 
having about the  same weight as the  Tra i lb lazer  IIa payload. 
launched while being spun a t  11 r p s .  
while being spun a t  about the  same r a t e  as Tra i lb lazer  In. 
good indication t h a t  the burning cha rac t e r i s t i c s  of t h i s  rocket motor would not 
be adversely affected by the spin rates t o  be encountered during f l i g h t  t e s t ing .  
These t e s t s  were similar t o  the  t e s t  described i n  reference 11. 

This vehicle was 
A second t e s t  vehicle was a l s o  launched 

These t e s t s  gave 

(g) The timers of each vehicle w e r e  checked t o  insure t h a t  they would not 
be affected (within k1 second) by the  vibrat ions,  spin,  o r  accelerat ions t h a t  
would be encountered during the  f l i g h t .  
on the  timers and associated wiring (by using l i g h t  bulbs instead of rocket 
i gn i t e r s )  t o  insure t h a t  t he  t i m e s  of a l l  the various events were what was 
desired f o r  t he  f l i g h t .  

Just  p r i o r  t o  launch, checks were made 

During assembly, t h e  vehicles  were dynamically balanced f o r  t he  following 
conditions: second-stage ign i t ion ,  ve loc i ty  package alone, third-s tage ign i t ion ,  
and fourth-stage ign i t ion .  In  each case the balanced configuration represented 
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cond$tions immediately a f t e r  a separation. 
t he  center of grav i ty  within about 0.002 inch of the  axis of spin f o r  the  bal-  
ancing operation. Runouts, o r  measurements read w i t h  a d i a l  indicator  r e s t ing  
against  the  external  contour of the  vehicle as t he  vehicle i s  very slowly 
rotated i n  the  spin balancer, were not greater than 0.050 inch f o r  t h e  complete 
ve loc i ty  package or  0.020 inch f o r  t he  loaded-third-stage and payload combina- 
t i on .  
balanced within about 0.003° of the  spin axis  when the  stage was mounted i n  t h e  
balancer. 

Balancing w a s  performed t o  br ing 

Balance weights were added t o  bring the pr inc ipa l  ax is  of the stage being 

The second-stage-velocity-package combination w a s  balanced on a horizontal  
balancing machine whereas the  veloci ty  package by i t s e l f  and smaller sections 
were balanced on a v e r t i c a l  balancing machine. Photographs of vehicle compo- 
nents i n  these f a c i l i t i e s  a re  shown i n  f igures  7 and 8. 

Launch 

The launcher f o r  the Trai lblazer  I1 vehicles was capable of being elevated 
from Oo t o  8g0 and pointed through a la rge  range of azimuth angles. 
s t ructed so t h a t  the vehicle was guided during t h e  f i r s t  4 inches of t r a v e l .  A 
photograph of one of t he  vehicles mounted on the  launcher i n  launch posi t ion i s  
presented i n  f igure  9. 
t o  t he  down-range camera s i t e s  and s tay  wi th in  the  range safety regulation, t he  
nominal t r a j ec to ry  chosen had a launch elevation angle of 80° and an azimuth 
angle of 153'. 

It w a s  con- 

Since it w a s  necessary t o  have the  reentry occur close 

The Trai lblazer  I1 vehicles  had no guidance system w i t h  which t o  assure 
that the  vehicle follows the nominal t ra jec tory ;  therefore ,  deviation of the 
vehicles  from the  nominal t r a j ec to ry  can only be corrected before the vehicle 
i s  launched. This deviation or  dispersion i s  dependent on a number of fac tors .  
The f ac to r s  that were considered i n  estimating the  disperison impact areas  
included f i n  misalinement, t h rus t  misalinement, th rus t  and impulse e r ro r s ,  drag 
calculat ion e r ro r s ,  weight var ia t ions,  and wind. Of these fac tors ,  wind, f i n  
misalinement, and thrust misalinement contribute nearly all the  e r ro r s  t h a t  
cause dispersion. 
conpensated f o r  by measuring the  winds p r io r  t o  launch and adjust ing the  launcher 
i n  e levat ion and azimuth so t h a t  the  e r ro r  i n  fli@pt path and azimuth angle i s  
within *lo and *5O, respectively,  during f i r s t - s t age  thrus t ing .  
l a rges t  contributor t o  the  dispersion e r ro r  a t  f i r s t - s t a g e  burnout w a s  expected 
t o  be the  f i n  and thrust misalinements. For dispersion calculat ions the  f i n  and 
t h r u s t  misalinements were assumed t o  be 0.lo and 0.05', respectively.  Figure 10 
shows the  estimated impact areas  f o r  the  expended f i r s t  stage, the expended sec- 
ond stage and velocity-package she l l ,  and the expended t h i r d  stage.  
stage impact a rea  a l s o  allows fo r  50 of t ip-off due t o  wobble and t h r u s t  m i s a -  
linements from t h e  a l t i t u d e  of third-stage igni t ion.  Included i n  t h i s  f igure  
a r e  t h e  ac tua l  impact points  of the  expended stages of Trai lblazers  IIa, In, 
and I I d  calculated from t h e i r  las t  known posit ion.  A l l  t he  impact points  shown 
here f a l l  within the  predicted impact areas .  
was not tracked by radar  a f t e r  i t s  separation from the  vehicle so i t s  impact 
point  i s  unknown. 

Wind, which i s  the l a rges t  contr ibutor  of dispersion, can be 

The second 

The th i rd -  

The f i r s t  stage of Trai lblazer  I I b  
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A s  was s ta ted previously, wind was the  la rges t  contributor t o  the disper- 
sion; therefore,  allowances f o r  wind were made t o  the  launcher se t t i ng  which 
would permit the  vehicle t o  obtain the  proper f l igh t -pa th  angle and azimuth 
headhg a t  the  end of the f i r s t - s t a g e  thrust ing.  
pensation i s  f u l l y  described i n  reference 12. The e f f e c t  winds have on the 
vehicle i s  shown i n  f i g u r e  11 where the  var ia t ion  of a l t i t u d e  with t h e  percent 
of t o t a l  change i n  f l igh t -pa th  angle f o r  a constant wind i s  i l l u s t r a t e d .  This 
curve covers t he  thrus t ing  period of the  f i rs t  stage from 0 t o  83,000 f e e t .  
i s  shown that 50 percent of t he  change i n  f l igh t -pa th  angle due t o  a constant 
wind occurs from 0 t o  1,000 f e e t .  
sounding balloons capable of being tracked by radar were used t o  determine speed 
and direct ion of the  wind up t o  83,000 f e e t .  
from a 250-foot-high anemometer tower with measurements taken every W f e e t .  
The wind veloci ty  and d i rec t ion  data  from the  balloon runs and the anemometer 
tower are fed in to  an e lec t ronic  computer. 
elevation and azimuth angles a t  which the launcher i s  set. Good r e s u l t s  from 
the wind-compensation method are indicated i n  f igure  10 by t h e  two impact points  
near the center of t h e  second-stage and velocity-package-skin impact areas .  

The method used f o r  wind com- 

It 

A s  explained i n  reference 12,  high-alt i tude 

Low-altitude winds a r e  monitored 

Results from the  computer give the  

RESULTS OF FLIGHT TESTS 

The data  obtained from the f l i g h t  t e s t s  of th ree  Trai lblazer  I1 vehicles  
a re  presented herein as the t r a j ec to ry ,  r o l l  r a t e ,  body motion, separation, and 
reentry r e su l t s .  The analysis  of the reentry data  i s  beyond the  scope of  t h i s  
report ,  but t he  data a re  shown herein a s  r e s u l t s  obtained from the sa t i s f ac to ry  
operation of the Trai lblazer  I1 vehicles.  

Trajectory Results 

A t y p i c a l  Trai lblazer  I1 nominal t r a j ec to ry  f o r  an 80° elevat ion angle a t  
launch i s  shown i n  f igure  12 f o r  the th ree  vehicles  described herein.  
tude, horizontal  range, veloci ty ,  f l igh t -pa th  angle, and time f o r  t h e  various 
events are given i n  tab le  111 f o r  both t h e  nominal, o r  predicted,  t r a j ec to ry  
and f o r  t he  ac tua l  f l i g h t  t r a j ec to ry  where avai lable .  
the figure and the t a b l e  an adequate descr ipt ion of t h e  nominal f l i g h t  t r a j ec -  
t o r y  can be obtained. After t he  f i r s t  and second stages burn out,  the second- 
stage rocket-motor case and the  ve loc i ty  package coast together  u n t i l  62 seconds 
a f t e r  launch. A t  t h i s  time these two pa r t s  a r e  separated a t  a separation veloc- 
i t y  of about 8 t o  10 f t / s e c  so t h a t  a t  330 seconds t h e  empty rocket-motor case 
and the veloci ty  package a r e  about 2,500 f e e t  apar t .  The spin t h a t  was gener- 
ated by the  canted second-stage f i n s  maintains the  ve loc i ty  package a t  an a t t i -  
tude tha t  i s  approximately equal t o  the f l igh t -pa th  angle a t  velocity-package 
separation. Shortly a f t e r  apogee when the t h i r d  stage i s  igni ted,  the  ve loc i ty  
package i s  s t i l l  a t  the  same a t t i t u d e  a s  it w a s  a t  62 seconds, which causes the  
t h r u s t  vector from the third-s tage motor t o  be almost perpendicular t o  the  
velocity vector .  Thus, the  f l i g h t  path of the  reent ry  stages during third-s tage 
burning tu rns  sharply i n t o  an almost v e r t i c a l  d i r ec t ion  with respect t o  the sur- 
face of the  ear th .  
approximately the same t r a j ec to ry  as the  ve loc i ty  package, continues on i t s  
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The a l t i -  

With the  combined use of 

The expended second-stage rocket-motor case, which follows 



b a l l i s t i c  t r a j ec to ry  somewhat behind the empty velocity-package she l l ,  and these 
two pa r t s  impact i n  the same general area.  

Also included along with the nominal data i n  f igure  I 2  and i n  a l l  the  sub- 

A radar t rack  w a s  obtained of the complete 
sequent f igures  are the ac tua l  f l i g h t  data  gathered from telemeter records, 
radar, and op t i ca l  tracking s ta t ions.  
f i r s t - s t age  t r a j ec to ry  of Trailblazer I I d  and i s  presented i n  f igure 12( c) . 
Prefl ight  calculations indicated t h a t  the  s t a b i l i t y  of the expended first stage 
alone was marginal. Due t o  the d i f f i c u l t y  of estimating the  aerodynamic param- 
eters of anything as i r regular  a s  the adapter joining the first and second 
stages, it could eas i ly  be t h a t  the  expended f i r s t - s t age  booster i s  aerodynami- 
c a l l y  unstable a f t e r  being separated from the remainder of the  vehicle.  
o r ig ina l  predicted impact area for the  f i r s t  stage, assuming a s tab le  condition, 
i s  i l l u s t r a t e d  i n  f igure 10 by the s m a l l  e l l ipse  outlined i n  dashed l ines .  The 
apparent i n s t a b i l i t y  of the f irst  stage alone created a high-drag condition and 
the first stage actual ly  impacted much closer t o  the launch point.  
mated impact area of f igure 10 was moved closer t o  the launch point a f t e r  recal-  
culation of the f i r s t - s t age  t ra jec tory .  
estimated from a p a r t i a l  t rack  of the f i r s t - s t age  rocket motor i s  a l so  shown t o  
be within t h i s  new impact area. 

The 

The e s t i -  

An impact point f o r  Trai lblazer  I I a  

The nominal ax ia l  acceleration of a typical  Trai lblazer  I1 flight during 
The ac tua l  

It 

the burning of the four primary stages is  presented i n  figure 13. 
longitudinal acceleration of Trai lblazer  I I d  i s  a l so  presented i n  this figure. 
The acceleration of the first and second stages i s  shown i n  f igure  l 3 ( a ) .  
can be seen t h a t  f o r  t h i s  vehicle the acceleration f o r  both the first and second 
stages was lower than predicted. Figure l3(b) shows the acceleration of the  two 
reentry stages.  
onds e a r l i e r  than planned. 
stage appears t o  be changed appreciably from the theore t ica l  curve. 
ference i s  due la rge ly  t o  the shape assumed for  the nominal th rus t  curve. 
t h rus t  curve f o r  the fourth stage i s  presented i n  f igure 14. When the  axial-  
acceleration data  were used t o  calculate  an actual  th rus t  curve obtained during 
the flight, the  curve ra ther  closely resembled the  thrus t  curve from a s t a t i c  
test  corrected t o  vacuum conditions. The measured chamber pressure for the 
third-stage motor of Trai lblazers  I Ib  and I I d  i s  presented i n  f igure 15. The 
tendency t o  have a s l i gh t ly  reduced th rus t  ear ly  i n  the burning period and 
increased t h r u s t  near burnout appears t o  be typ ica l  f o r  motors burning while 
spinning. 

The reentry sequence of the tes t  vehicle started about 5 sec- 
The shape of the acceleration curve f o r  the  fourth 

T h i s  d i f -  
The 

The var ia t ion  of veloci ty  with time for  the  outgoing portion of t he  t ra jec-  
t o r y  i s  presented i n  figure 16 and for t he  reentry portion of each flight i n  
f igure 17. Variation of a l t i t ude  w i t h  velocity f o r  the reentry part of each 
f l i g h t  i s  presented i n  f igure 18. 
jectory of each of the tes t  vehicles. 

The following i s  a r&sum& of the  flight tra- 

Trai lblazer  1Ia . -  The apogee of t h e  f l i g h t  t r a j ec to ry  of Trai lblazer  IIa, 
shown i n  figure 12(a) ,  was about 100,OOO feet  lower than predicted. I n  sp i t e  of 
the a l t i t u d e  loss, the  reentry stages performed sa t i s f ac to r i ly  and reentered the 
payload a t  19,700 f t / s e c  and a t  approximately the predicted horizontal  range. 
The outgoing ve loc i ty  p lo t  of f igure 16 shows the  decrease of about 350 f t / s e c  
from the  predicted velocity a t  second-stage burnout. This loss i n  veloci ty  and, 



consequently, the low apogee were a t t r ibu ted  t o  a l o s s  i n  th rus t  of t he  f i rs t  
stage due t o  the  propellant i n  the rocket motor being a t  well  below normal 
operating temperatures. 
i n  order t o  keep the f i r s t - s tage  motor up t o  normal temperature. 
removed pr ior  t o  launch. 
i n  figures l7 (a)  and 18(a) was obtained i n  sp i t e  of  the lo s s  i n  outgoing veloc- 
i t y  and m a x i m u m  a l t i t ude .  
ures  l7(a)  and 18( a) . 
compares well  with the  predicted veloci ty-al t i tude p lo t .  

For subsequent launchings a heating jacket was provided 
The jacket was 

The predicted reentry veloci ty  of t h e  payload as shown 

Optical data f o r  the payload a re  presented i n  f i g -  
The veloci ty-al t i tude p lo t  obtained from opt ica l  tracking 

(See f i g .  18(a) .) 

Trailblazer 1Ib.-  The fl ight t r a j ec to ry  of Trai lblazer  IIb, a s  shown i n  
f igure 12(b), w a s  higher than predicted, the  apogee being about 1,000,000 feet .  
This high t r a j ec to ry  was due t o  the  resu l tan t  f l igh t -pa th  angle being about 
11” higher than nominal a t  t he  end of t h e  f i r s t - s t age  burning. This vehicle 

obtained the  predicted peak veloci ty  on the  outgoing pa r t  of t he  t ra jec tory ,  
shown i n  f igure  16, but due t o  a high t r a j ec to ry  the  apogee ve loc i ty  was lower 
than predicted. The f i r i n g  of t he  reentry stages was sa t i s fac tory .  The reentry 
veloci ty  f o r  Trai lblazer  IIb i s  presented i n  f igures  l7(b) and 18(b) .  The small 
p e l l e t  was not tracked by radar.  The fourth- and f i f th -s tage  rocket motors were 
tracked by radar  and t h e i r  ve loc i t i e s  show good agreement with t h e  predicted 
ve loc i t ies  u n t i l  burnout of the f i f t h  stage.  The veloci ty  a t  the  end of t h e  
f i f th -s tage  burning i s  1800 f t / s e c  lower than predicted.  
duced t h i s  l o s s  i n  tha t  t h e  thrus t  vector would not have been i n  l i n e  with the  
veloci ty  vector.  
u res  l7 (b )  and 18(b) .  Also presented i n  f igure  18(b) are optical-tracking data 
f o r  t he  reentry of the th i rd ,  fourth,  and f i f t h  stages.  The p e l l e t  did not 
obtain i t s  predicted velocity.  According t o  the  optical-tracking data ,  the  pel- 
l e t  d id  reach a m a x i m u m  veloci ty  of about 38,900 f t / s ec .  
resultant veloci ty  of the  f i f th -s tage  veloci ty ,  and t h e  p e l l e t  ve loc i ty  as it 
w a s  ejected from the  accelerator.  
angle between the  luminous t rack  of t h e  f i f th -s tage  case and the  p e l l e t  t rack  

10 was about 11- . 
3 

reduction w a s  about 33,800 f t / s e c .  
l e t  velocity,  and the  angle between the  two it can be determined t h a t  t he  accel- 
e r a to r  propelled the  p e l l e t  a t  about 8,800 f t / s e c  a t  an angle of 60° t o  t h e  
direct ion of f l i g h t .  Apparently, a la rge  wobble angle developed during the  
burning of the  f i f t h  stage; it was possibly created by burning through of one 
s ide of the nozzle. 
of about 1,800 f t / s ec  i n  the  f i f th -s tage  t r a j ec to ry .  
s tages  had a high spin r a t e  a t  t h i s  t i m e  t h e  moment of i n e r t i a  i s  so small 
( t ab le  I) t h a t  a small disturbing moment could create  a wobble of t h i s  magnitude. 

2 

Wobble could have pro- 

Optical tracking data f o r  t he  p e l l e t  a r e  presented i n  f ig-  

This ve loc i ty  i s  the  

The optical-tracking data indicated tha t  t he  

The veloci ty  of t he  f i f t h  stage as obtained from optical-data 

By using the  f i f th -s tage  veloci ty ,  t h e  pel- 

This wobble angle a l s o  could account f o r  t he  veloci ty  loss  
Even though the  l a s t  two 

Trai lblazer  I I d .  - The outgoing phase, of t h e  t r a j ec to ry  of Trai lblazer  I I d  
i n  figure 12(c) followed t h e  predicted path f a i r l y  w e l l ,  but w a s  about 
50,000 fee t  l o w  a t  apogee. 
ond stage. 
worked sa t i s f ac to r i ly .  
a l t i t u d e  i s  presented i n  f igures  17(c) and l8(c)  and compared with radar t racking 
data.  The veloci ty  of the t h i r d  stage was about 1,100 f t / s ec  lower than pre- 
dicted,  which i s  indicated by the  constant lower accelerat ion produced during 

This was probably due t o  reduced thrust i n  the  sec- 

The predicted reent ry  veloci ty  p lo t ted  against  t i m e  and 
The reentry s tages  a l l  fired 5 seconds earlier than predicted but 
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i t s  burning. Therefore, the  maximum veloci ty  obtained by the 8-inch spherical  
sol id  reentry body i s  18,800 f t / s e c ,  which i s  1,100 f t / s e c  lower than the  nom- 
i n a l .  
and 18(c) .  
t h i r d  and four th  stages.  

Optical  tracking data f o r  t he  payload a re  presented i n  f igures  17(c) 
Optical  t racking data  a re  a l so  presented i n  f igure  1 8 ( ~ )  f o r  the 

Ro l l  Rate Results 

The nominal r o l l  r a t e  f o r  each vehicle i s  presented i n  f igu re  1-9 along 
with data  obtained during the  f l i g h t  of each vehicle.  The f l i g h t  data were 
obtained from a r a t e  gyro, an aspect magnetometer, and from the  telemeter sig- 
n a l  strength.  The data  f romthe  r a t e  gyro are read d i r ec t ly ,  and the  d i rec t ion  
of r o l l  can be determined; whereas, t he  data from the  magnetometer and the  sig- 
n a l  s t rength a r e  obtained by counting cycles on the  telemeter t r ace .  For each 
cycle on the  magnetometer t r a c e  there  i s  one complete revolution of the vehicle,  
whereas f o r  two cycles on the signal-strength t r a c e  there  i s  one revolution of 
the  vehicle.  The roll r a t e  from the r a t e  gyro and from the s igna l  s t rength o r  
magnetometer i s  presented i n  f igure 19 for comparison. 
systems agree qui te  well  with one another. 

These two data-measuring 

Even though the  second-stage f i n s  are  canted t o  produce roll i n  t he  vehi- 
c l e ,  l i t t l e  o r  no r o l l  occurs during the f i r s t - s tage  th rus t  period a s  the ro l l i ng  
moment due t o  t h e  downwash e f f e c t  of the  deflected second-stage f i n s  on the  
f i r s t - s t a g e  f i n s  i s  about equal and opposite t o  the  ro l l i ng  moment of the  
def lected second-stage f i n s .  This same ef fec t  w a s  noted i n  the  case of 
Tra i lb lazer  I. (See r e f .  3 . )  When the  second stage i s  igni ted and s t a r t s  
burning the  r o l l  r a t e  immediately increases  u n t i l  separation. The r o l l  r a t e  i s  
constant from separation u n t i l  th i rd-s tage igni t ion.  
obtained throughout the  complete f l i g h t  because the  payload telemeter f a i l e d  a t  
fourth-stage ign i t i on  on Trai lblazer  I I a  and the  f i n a l  three reentry stages of 
Trai lblazer  I I b  were not instrumented. 

The r o l l  r a t e  was not 

I n  Tra i lb lazer  I I a  the  r o l l  rate experienced a s l i gh t  decrease near the 
t = 361 seconds. end of t he  third-s tage burning a t  

occurred which was noticeable on the  telemeter channels measuring angular r a t e s .  
The r o l l  r a t e  was decreased s l i g h t l y  and the  amplitudes of the  pi tch-  and yaw- 
r a t e  o s c i l l a t i o n s  were increased, suggesting an increase i n  the  amplitude of the 
coning angle. The longi tudinal  acceleration had already s t a r t ed  t o  decrease 
before 361 seconds showing t h a t  the  motor th rus t  was already i n  the  t a i l -o f f  
period. It i s  believed t h a t  a section of the nozzle d i f fuse r  may have come off  
a t  t h i s  time. 

A t  t h i s  time a disturbance 

Body Motions 

A spin-s tabi l ized vehicle t h a t  i s  above t h e  atmosphere w i l l  have a tendency 
t o  wobble when disturbed by moments caused by the  separation of the  vehicle 
p a r t s  o r  a s l i g h t  asymmetry i n  the thrust of a rocket motor. 
of these separations takes place a change i n  t h e  moment of i n e r t i a  of t he  vehi- 
c l e  r e s u l t s .  I / Ix ,  could be d e t r i -  
mental; i f  t h e  r a t i o  i s  close t o  uni ty  the  wobble angle could be increased t o  

Whenever any one 

A change i n  t h e  moment-of-inertia r a t i o ,  



an undesirable magnitude. I f  the  wobble angle i s  la rge  the dispersion of t he  
reentry payload o r  object can be qui te  extensive. 
Trai lblazer  vehicles there  a re  times when knowledge of the  wobble angle i s  of 
spec ia l  i n t e r e s t .  
i t y  package from the empty second-stage rocket motor and before, during, and 
a f t e r  the  third-s tage burning. 
o r  y a w  ra te  gyros and the  normal o r  t ransverse accelerometers. 

During the f l i g h t  of the 

These times a re  before and a f t e r  the  separation of the veloc- 

Wobble-angle data were obtained from the p i t ch  

I n  the case of Trai lblazer  I I a  the  telemeter record was of very poor qual- 
i t y ,  but an attempt was made t o  ex t rac t  some numbers from the  p i t ch  and yaw 
gyros i n  order t o  obtain an idea of t h e  wobble angles.  Before the  veloci ty  
package separated from the  burned-out second s tage,  the  wobble angle was about 
6.8' and a f t e r  separation the  angle was about 2.0°. Immediately a f t e r  t h i rd -  
s t a  e igni t ion,  o r  approximately 330 seconds, t he  angle of wobble was about 
2.6'; a t  340 seconds, 1.g0; and a t  $0 seconds, 1.6'. A t  362 seconds, o r  
shor t ly  a f t e r  t he  disturbance t h a t  occurred t o  t h e  vehicle,  the  wobble angle 
increased t o  7.70. 
because of telemetry f a i l u r e .  

No data  were avai lable  a f t e r  the  fourth-stage ign i t ion  

For Trai lblazer  ITb the  p i t ch  and yaw r a t e  gyros i n  the performance telem- 
e t e r  indicated t h a t  before velocity-package separation at 62 seconds the  wobble 
angle was about 10.3O. 
t o  about 2.3'. 
no change i n  wobble angle occurred u n t i l  th i rd-s tage ign i t ion .  
mation on the  wobble angle during reentry was not ava i lab le .  

Af'ter separation a t  63 seconds the  wobble angle decreased 
Since the  vehicle i s  out of the sensible atmosphere a t  this time 

Further infor-  

During the  f l i g h t  of Trai lblazer  I I d  the  performance telemeter f a i l e d  a t  

The telemeter i n  the  adapter joining the  t h i r d  and 
the  end of second-stage burning; therefore ,  no r a t e  measurements were obtained 
during the desired times. 
fourth stages recorded accelerat ions,  and it w a s  determined t h a t  t he  normal and 
transverse accelerometers would be able  t o  record the  wobble data i f  the  osc i l -  
l a t i o n s  were la rge  enough. Since no osc i l l a t ions  were detected on the  acceler-  
ometer t races ,  it was calculated tha t  the wobble angle had t o  be l e s s  than 3.70 
a t  63 seconds, o r  a f t e r  velocity-package separation; 0 . 6 ~  a t  321 seconds, o r  
third-stage ign i t ion ,  and 13.8' a t  about 365 seconds, o r  near the  end of t h i rd -  
stage burning. 

On another Trai lblazer  I1 vehicle,  not described i n  t h i s  paper, the  wobble 
angle calculated from the p i t ch  and y a w  r a t e  gyros was about 70 before separa- 
t i o n  a t  62 seconds and 2.4O a f t e r  separation a t  63 seconds. Also, a calculat ion 
made from an accelerometer t r a c e  during third-s tage burning a t  337 seconds ind i -  
cated tha t  the  wobble angle w a s  5.3'. 

Separation Results 

The ve loc i ty  package separated from the  empty second-stage rocket motor a t  
about 62 seconds with l i t t l e  o r  no disturbance on t h e  three  vehicles  described 
herein.  
indicated t h a t  separation was smooth and no tilt o r  kick-off was encountered i n  
the  cut t ing of the  metal and expansion of the bellows. 

The three  microswitch systems, as explained i n  a previous sect ion,  
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When the  ve loc i ty  s tages  leave the  velocity-package s h e l l  propelled by the 
third-s tage rocket motor the transmission of the  telemetry data  must change t o  
a d i f f e ren t  antenna. A t  the in s t an t  t h e  th i rd  stage f i r e s ,  the  antenna of t he  
ve loc i ty  package i s  disengaged and the  transmission of t he  s igna l  i s  interrupted 
temporarily u n t i l  t h e  whip antennas of the reentry system are extended. 
temporary in te r rupt ion  of the  s igna l  i s  i l l u s t r a t e d  i n  f igure  20, which shows a 
portion of a typ ica l  telemeter record from the third-s tage telemeter a t  t h e  time 
the  t h i r d  stage i s  igni ted.  The f igure  shows that it takes about 0.1 second f o r  
t h e  reentry rocket motors t o  leave the  package skin and about 0.15 second before 
the  whip antennas s top shaking; thus, separation of the  reentry rocket motors 
from the  ve loc i ty  package of Trai lblazer  I I d  has been accomplished. 

This 

O f  the  vehicles reported herein,  separation of the component p a r t s  during 
the  reentry sequence has occurred without mishap. 
by telemetry, whereas others  can only be detected by radar .  
ra t ion  of t he  small pa r t s  of Trai lblazer  I I b  could only be detected by the veloc- 
i t y  d i f f e r e n t i a l  between the reent ry  s tages  as  indicated by radar and op t i ca l  
equipment. 
e t r y .  Figure 21 shows three  portions of t he  telemeter record from the  fourth- 
stage telemeter.  The section on the  l e f t  shows the fourth-stage ign i t ion  on the 
longi tudinal  accelerat ion t race .  The middle section shows the  separation of the 
8-inch spherical  payload from the  four th  stage detected by 8 separation switch 
designed t o  change the telemeter frequency when separation occurs. The section 
on the  r igh t  shows t h e  ign i t ion  of t he  f i f th -s tage  retro-rocket motor on the 
longi tudinal  acceleration t r ace .  The sections of the telemeter record ind ica te  
t h a t  these separations and rocket-motor f i r i ngs  worked as expected. 

Some separations a re  detected 
The proof of sepa- 

I n  Trai lblazer  I I d  separation of t h e  payload was detected by telem- 

Reentry Results 

Presented herein are some op t i ca l  and radar data  obtained during the  reentry 
of the payloads in to  the  atmosphere. The analysis of these data  i s  beyond the  
scope of t h i s  report ,  but  f igures  22 and 23 are  presented t o  show the type of 
data  obtained and t o  indicate  tha t  the specif ic  f l i g h t  w a s  successful from the 
standpoint of obtaining reentry da ta .  Photographs taken from Coquina Beach, 
North Carolina, of t h e  reentry s t reaks f romthe  three  vehicles  presented herein 
are shown i n  f igu re  22. These photographs show not only the  payload reentry 
s t reak  but  a l s o  the  reentry s t r e d s  of the burned-out rocket motors and occa- 
s iona l ly  other  debr i s  released from the reentry system. 
graph includes a l l  the reentry objects  that were present f o r  each shot. Some 
cameras were equipped with a ro t a t ing  shutter which cut of f  the l i g h t  entering 
t h e  camera fo r  short  precisely measured in te rva ls .  
chopped t r a c e  on the  s t reak photograph from which ve loc i ty  calculat ions could be 
made. 
other  photographs not shown here were time chopped so t h a t  ve loc i ty  calculat ions 
of the reent ry  object could be made. 
i s  a t  an angle t o  the  t r ack  of the  f i f th-s tage rocket motor, which, as mentioned 
previously,  ind ica tes  that a large wobble angle was present.  
f o r  t he  p e l l e t  were obtained from chopped photographs. It was not possible  t o  
check t h i s  ve loc i ty  with radar  data  since the radars  cannot t r ack  an object as 
s m a l l  as t h e  p e l l e t .  
and radar ve loc i ty  data  can be compared. The var ia t ion  of radar cross section 

I n  each case the photo- 

This gave an interrupted o r  

The t r a c e s  on the photographs presented i n  f igure 22 a re  unchopped, but  

I n  figure 22(b), t he  t rack of the p e l l e t  

The ve loc i ty  data 

Other payloads were tracked by radar and t h e i r  photographic 



with a l t i t ude  of t he  S-band frequency i s  presented i n  f igure  23. 
a l t i t u d e  p l o t s  a r e  a l so  presented t o  be used as a comparison with the  cross- 
sect ion p lo t .  The Trai lblazer  I I a  data of S-band frequency ( f i g .  23(a)) a r e  
presented a t  t he  r a t e  of 10 points/sec.  The Trai lblazer  I I d  data  of S-band 
frequency ( f i g .  23(b)) a re  presented a t  the  r a t e  of 40 points/sec.  The data  
of Trai lblazer  IIa a re  qui te  scat tered,  but the  data  of T ra i lb l aze r - I Id  a re  
well  defined and show enhancement qui te  readi ly .  
academic reasons and no analysis  w i l l  be presented herein.  

Velocity- 

These data  a re  presented fo r  

SUMMARY OF RESULTS 

The results of th ree  f l i g h t  t e s t s  of an  unguided reentry physics research 
vehicle,  consis t ing of four basic  stages and capable of reentering a payload i n  
a near v e r t i c a l  t r a j ec to ry  a t  a point about 750,000 f e e t  from the  launch pad, 
a r e  as follows: 

1. One vehicle reentered a 45.3-pound payload a t  19,700 f t / s e c .  

2. One vehicle used an added stage and a high-energy accelerator  t o  reenter  
This ve loc i ty  was lower than expected a 2.2-gram s t e e l  p e l l e t  a t  38,900 f t / s ec .  

and i s  believed t o  be due t o  excessive wobble a t  t he  time of accelerator  
ign i t ion .  

3. One vehicle reentered a so l id  beryllium 17.8-pound sphere a t  a veloci ty  
The sphere was ejected from the  expended fourth-stage rocket of 18,m f t / s e c .  

case, and the  rocket case was then slowed down with a retro-rocket t o  obtain 
the  desired separation between the  reenter ing objects .  

4. All stages landed within the  expected nominal dispersion e l l i p s e s  except 
f o r  t h e  expended f i r s t  stage.  The f i r s t - s t a g e  rocket case was aerodynamically 
unstable when separated from the  remainder of the vehicle and impacted much 
closer  t o  the launch point than o r ig ina l ly  calculated.  
f o r  t h i s  stage has been determined. 

A new dispersion e l l i p s e  

5. Approximate wobble angles a t  various s tages  throughout t he  f l i g h t  have 
been determined from avai lable  telemeter records. 

6. It was possible t o  construct pressure curves of the th i rd-s tage  rocket 

These da ta  indicated t h a t  the  t h r u s t  of the  spinning 
motor and a th rus t  curve of the  fourth-stage rocket motor from telemetered pres- 
sures and accelerat ions.  
motor i s  somewhat s imilar  t o  t h a t  of a nonspinning motor under s t a t i c  t e s t s  
corrected t o  vacuum conditions except that the re  was a d e f i n i t e  tendency of the 
th rus t  from the f l i g h t  t e s t  t o  be lower during the  f i r s t  pa r t  of t h e  t h r u s t  
period and higher during the l a t t e r  part than the  th rus t  from the  s t a t i c  t e s t s .  

Langley Re search Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va. ,  Ju ly  16, 1964. 
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TABLE I.- 

Weight, 
l b  

Event T i m e  , 
sec 

VEHICLE 

Center of I, 
gravi ty ,  i n .  slug-ft2 

PrnSICALI PROPERTI E S 

0 
1.9 
35.1 
35.6 
43.8 
62.1 
328.7 
368.0 
379 * 2 
384.0 
401.0 

Launch 
Recruit burnout 
Clamp re lease  
Skat ign i t ion  
Skat burnout 
Velocity-package separation 
Altair  ign i t ion  
Al ta i r  burnout 
Cygnus 15 igni t ion  
Cygnus 15 burnout 
Payload reentry 

13,430 
12 , 399 
57 576 
3,092 
1,888 
1 , 082 
681 
225 
146 
45- 3 
45.3 

0 
1.9 
35.8 
36.2 
44.4 
61.9 
329.7 

369.6 
374.4 
377.6 
378.9 
381.4 

0 
1.9 
35.7 
36.0 
44.2 
62.6 
320.4 
359.7 
365.4 
3n.4 
374.1 

Launch 
Recruit burnout 
Clamp re lease  
Skat ign i t ion  
Skat burnout 
Velocity-package separation 
Al ta i r  ign i t ion  ' 

Alta i r  burnout 
Cygnus 15 igni t ion  
Cygnus 15 burnout 
Cygnus 5 ign i t ion  
Cygnus 5 burnout 
High-energy accelerator  

i gn i t i on  

-3,488 
-2 , 457 
5,614 
3 7 092 
1,888 
1,055 
681 
225 
113 
14.3 
4.96 
1.21 
.005 

425 
417 
329 
196 
155 
73.4 
86.7 
93.9 
log. 0 
114.0 
114.0 

Trailblazer I I d  

Launch 
Recruit burnout 
Clamp re lease  
Skat ign i t ion  
Skat burnout 
Velocity-package separation 
Altair  ign i t ion  
Altair burnout 
Cygnus 15 igni t ion  
Cygnus 15 burnout 
Payload eject ion 

63,800 
60,000 
4-o,m 
8,150 
5,680 
400 
62.2 
33.2 
1-99 
1.15 
1.15 

Trai lb lazer  IIb 

425 
420 
337 
200 
159 
73.0 
75-9 
88.9 
107.8 
110.0 
121.6 
123.4 
----- 

13 , 421 
12 , 387 
5,612 
3 ? 093 
1,903 

703 
233 
150 

1 104 

48.3 
17.8 

427 
419 
335 
200 
164 
74.0 
78.1 
98.3 
111.0 
119.2 
128.0 

54,100 
50 , 300 
40,800 
8,000 
5, 530 
390 
62.0 
27.6 
-79 
.32 
-007: . oox ----------- 

33,800 
;o,cQo 
+o , 800 
8,150 
5,730 
408 
64.2 
34.4 
2.69 
1.70 
.024 

526 
453 
260 
41.7 
35.4 
13.7 
6.0 
1-33 - 90 
.40 
.40 

528 
$55 
262 

34.5 

6.0 
1.32 

-58 
.06 

.ooog 

40.9 

13.4 

.0024 

-- --- --_ 

j26 
c53 
62 
41.7 
35.7 
14.0 
6.2 
1.38 - 70 

* 19 
.024 
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TABLE 11. - AERODYNAMIC PARAMCPWS FOR THE TRAILBLAZER I1 VEHICLE 

I M  

(a) Complete vehicle 

~~ 

C+ fo r  angles of attack of - 
00 40 15' 200 400 70' 90" 

4.0 
5.0 

00 

-1,028.65 
-1,245.21 
-1,732.47 
-1,096.33 

-6'3.07 
-460.19 
-365.44 

40 25' 1 50" 

-15,132 -04 
-17,135.00 
-36,706.00 
-18,962.00 
-15,213.00 

-16,269.00 
-14,605.00 

0 
.5 
.85 
-90 
.95 

1.10 
2.00 
3.00 
4.00 
5.00 

-8,107 
-9,610 

-23,618 
-7,511 
-2,802 

. -1,922 
-1 573 

2.15 2.04 

3.14 3.04 
4.24 4.14 

2.25 2.15 

5.34 5.34 
5.97 6.18 
5-03 5.24 
3.77 4.03 
3-20 3.51 
2.72 3.09 

c2 6 sa CN,S CAS 
d2 M s 

ClP 
(4 

3 - 56 0.556 -2,420 0 23.8 1.72 
5 -9 .324 -1,620 0 17.5 1.45 

.206 -1,355 0 14.2 1.26 8 -24 

77.55 
84.89 

xcp, 
f t  

21.00 
18.87 
17.17 

M 

0 
.9 

1.1 
2.0 
3.0 
4.0 
5.0 

2.57 
2.67 
3.56  
4.66 
5.71 
6.18 
5.24 

2.10 
2.20 
3.04 

x,,, ft, f o r  angles of attack of - 

41.17 41.17 
38.82 

"*O0 37.51 37.25 

36.08 35.15 
36.65 

13.5' 

40.01 
40.01 
41.17 
9.82 

l 
35.00 
35.00 

1 

(b) Second stage and veloci ty  package 



TABLE 111.- ALTITUDE, HORIZONTAL RANGE, VELOCITY, AND 

FLIGHT-PATII ANGLE FOR VARIOUS EVENT TIMES 

Time, 
sec 

0 

35.5 
35.8 
44.0 
62.0 

286.0 
330 * 0 
380.0 
404.5 

547 - 0 

05 

420.0 

( a )  Trai lblazer  I I a  

Alti tude,  
f t  

26 
26 

79,502 
80,744 

130,092 
234,671 
988,518 
959,972 
656,372 
213,287 
201,998 

0 

Event 

Alti tude,  
f t  

Castor igni t ion 
Recruit ign i t ion  
Clamp release 
Skat igni t ion 
Skat burnout 
Velocity-package separation 
Apogee 
Al t a i r  igni t ion 
Cygnus 15 ign i t ion  
Payload max. veloc i ty  
Altair m a x .  veloci ty  
Skat impact 

Horizontal 
range, f t  

Event 

Castor igni t ion 
Recruit ign i t ion  
Clamp release 
Skat igni t ion 
Skat burnout 
Velocity-package separation 
Apogee 
Altair igni t ion 
Cygnus 15 ign i t ion  
Payload max. veloc i ty  

Time, 
se c 

0 . It 
35.1 
35.6 
43.8 
62.1 

274.0 
328.7 
379.2 
401.0 

Nominal 

Horizontal 
range, f t  

0 
0 

26,601 
27,073 
46,253 
97,122 

698,211 
813,743 
868,998 
787,447 
849,253 

1,395,000 

Actual 

26 
26 

68,150 
70,040 

115,222 

894,100 

511 , 800 
132,000 

235 9 000 

849,400 

0 
0 

25,170 
25,920 

94,730 
651,600 
793,900 
853,000 
822,000 

44,103 

Velocity , 
f t  /see 

0 
1 

4,429 
4,432 
7,764 
7,220 
2,747 
3,038 

10,761 
19,625 
11,918 
1,000 

80.0 
80.0 
69.2 
69.2 
68.3 
66.8 
0 

-25.1 
-92.6 

-100.8 

-70.0 
-92.4 

belocity, 
f t  /se c 

0 ------ 
4,076 
4,070 
7,424 
6,876 
2,620 
3,070 

10 , 35Q 
19, 780 

Y ,  
deg 

75.3 
75.3 
68.2 
68.1 
67.6 
65.9 
0 

-31.5 
-88.7 
-96.0 

Ya J 

3% 

0 
0 
0 
0 
0 
0 
0 
0 

-8.0 
-11.2 
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TABU I11 - - ALTITUDE, HORIZONTAL RANGE, VELOCITY, AND 

Altitude, 
f t  

26 
26 

79 , 502 
80,744 

130,092 
254,6 71 
988,518 
959,972 
742 9 901 

588,704 
436,040 

309,645 
297,618 
280,393 
199 9 737 

717,998 

0 

1 FLIGHT-PATH ANGLE FOR VARIOUS EVENT TIMES - Continued 

Horizontal 
range, f t  

0 
0 

26,601 
27,073 
46,253 
97, x.2 

698,211 
813 , 743 
893,541 

831,031 
787,113 

749 , 996 
746 , 499 
753,445 
835,314 

1,393,000 

857,401 

(b) Trailblazer IIb 

Velocity, 
f t / s ec  

0 
1 

4,429 
4,432 
7,764 
7,220 
2 , 747 
3 , 038 

10 351 
10,423 
25,882 
36,008 

Event Y, 
deg 

80.0 
80.0 
69.2 
69.2 
68.3 
66.8 
0 

-25.1 
-92.6 
-92.6 

-104.2 
-106.4 

Castor ign i t ion  
Recruit igni t ion 
Clamp release 
Skat ign i t ion  
Skat burnout 
Velocity-package separation 
Apogee 
Al t a i r  ign i t ion  
Spin-rockets f i r i n g  
Cygnus 13 igni t ion 
Cygnus 5 igni t ion 
High-energy accelerator 

Pe l l e t  m a x .  velocity 
Cygnus 5 m a x .  veloci ty  
Cygnus 15 m a x .  velocity 
Al t a i r  m a x .  velocity 
Skat impact 

igni t ion 

Actual 
Event 

T i m e ,  Altitude, Horizontal Velocity, 
sec f t  range, f t  f t / s ec  

Castor ign i t ion  0 26 0 0 
Recruit ign i t ion  .14 26 
Clamp release 35.8 78,413 23,822 4 , 189 
Skat ign i t ion  5 2  79,997 24 , 351 4,193 
Skat burnout 44.4 128,280 40,860 7,686 
Velocity-package separation 61.9 250,970 84,915 7,159 
Apogee 288.0 1,000,420 619,300 2,400 
Al t a i r  ign i t ion  329.7 975,860 716,380 2,800 
Spin- rockets f i r i n g  5 7 . 7  786,434 773,400 10,354 
Cygnus 15 igni t ion  369.6 767,630 774,000 10,686 
Cygnus 5 ign i t ion  377.6 618,030 758,220 25,428 

0 ------ 

High-energy accelerator 381.4 522,440 744,820 34,200 

, P e l l e t  t op  of v i s ib l e  t r a i l  389.5 243,000 649,000 38,900 
igni t ion  

I 

Time,  
sec 

0 
- 05 

35.5 
35-8 
44 .O 
62.0 

286 -0 
330 0 
368.0 
370.4 
377.3 
382.0 

384.8 
386 .o 
389.5 
417.0 
547.0 

Nominal 

47,075 
36, 
26,226 
11,788 
1,000 

-106.3 

-104.2 
-106.3 

-70.0 -92*3 I 

78.0 
78.0 

n.4 
70.5 
69.2 
0 

-26.1 
-89.0 
-89.0 
-99.4 
-98.3 

71.4 

yd 7 

deg 

0 
0 
0 
0 
0 
0 
0 
0 

-8.6 
-8.8 

-7.6 
-8.5 

---- 
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TABU 111.- ALTITUDE, HORIZONTAL RANGE, VELOCITY, AND 

FLIGRT-PATH ANGLE FOR VARIOUS EVENT TIMES - Concluded 

Event 

Castor igni t ion 
Recruit ign i t ion  
Clamp release 
Skat igni t ion 
Skat burnout 
Velocity-package separation 
Apogee 
Altair igni t ion 
Cygnus 15 ign i t ion  
Payload separation 
Cygnus 5 ign i t ion  
Payload m a x .  ve loc i ty  
Cygnus 15 - 5 m a x .  ve loc i ty  
S ka t impa c t 

Event 

~ ~ 

Castor igni t ion 
Recruit ign i t ion  
Clamp release 
Skat igni t ion 
Skat burnout 
Velocity-package separation 
Apogee 
A l t a i r  igni t ion 
Cygnus 15 ign i t ion  
Payload separation 
Cygnus 5 ign i t ion  
Payload m u .  veloci ty  

(c) Trai lblazer  I I d  

Time 
se c 

0 

35- 5 
35.8 
44.0 
62.0 
286 .o 
325 * 0 
370 * 0 
377.2 
382.2 
394.9 
394.2 
547.0 

-05 

Time 
sec 

0 

35.7 
36.0 
44.2 
62.6 
280.0 
320 4 
365.4 
374.1 
379 * 0 
388.0 

.21 

~~ 

Alti tude 
f t  

Nominal 

Horizontal 
range, f t  

0 
0 

26 601 
27,073 
46 J 253 
977 122 
698 J 518 
813 J 743 
860 013 
833 , 642 
817 J 752 
777 J 740 
784 , 579 

1 y 393 y 000 

Altitude, 
f t  

26 
26 

78,000 
79 J 000 
125,000 
247 520 
939,663 
915,900 
669 , ooo 
543 J 400 
447,240 
289 ooo 

Actual 

Horizontal 
range, f t  

0 
0 

30 , 400 
30 J 500 
48 J 300 
92,469 
639,963 
739 , 900 
781 J 700 
759 J 800 
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Figure 3 . -  Sketches of t h e  th i rd-s tage  and payload combinations. A l l  s t a t i o n  loca t ions  
are  i n  inches. 



Sta. 
99.22 

( a )  T ra i lb l aze r  I I a .  A 9' half-angle blunt-nosed cone as t h e  r een t ry  ob jec t .  

(b) T ra i lb l aze r  In. A 5.8-gram s t a i n l e s s - s t e e l  p e l l e t ,  t h e  primary r een t ry  ob jec t ,  propelled by 
Cygnus 15, Cygnus 5 ,  and a shaped-charge acce le ra to r .  

( c )  T ra i lb l aze r  I I d .  An 8-inch-diameter s o l i d  beryll ium sphere,  t h e  primary r een t ry  ob jec t ,  
p rope l led  by Cygnus 15 and e j ec t ed  by a spr ing .  

Figure 4.- Sketches of t h e  payloads. All s t a t i o n  l o c a t i o n s  a r e  i n  inches .  



I. 

*# 

( a )  Tra i lb lazer  IIa. L-61-7903 

L-62-3614 
(b)  T r a i l b l a z e r  IIb. 

L-65-1741 
( c )  Tra i lb lazer  IId. 

Figure 5.- Photographs of the  reent ry  configurat ions.  
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- r e  a a 

L-61-300 
Flgure 7.- Photograph of Trai lblazer  IIa reentry configuration mounted i n  the  ver t ica l  

spin balance machine. 
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L-62-4433 
Figure 9.- Photograph of t h e  Tra i lb l aze r  I1 reent ry  research vehic le  on t h e  launcher.  
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P e r c e n t  of t o t a l  change  

Figure 11.- Variat ion of a l t i t u d e  with percent of t o t a l  change i n  f l i g h t - p a t h  angle from a 
constant wind f o r  the Tra i lb lazer  I1 vehic le .  
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(a )  T r a i l b l a z e r  I I a .  

f igure 17.- Comparison of estimated v e l o c i t y  as a func t ion  of  time f o r  t h e  r een t ry  por t ion  of t h e  
f l i g h t  of t h r e e  Tra i lb l aze r  I1 veh ic l e s  w i t h  va lues  obtained by radar  t r ack ing .  
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figure 2 9 . -  Sect ion  of t h e  te lemeter  record showing t h e  A l t a i r  rocket-motor i g n i t i o n  from t e s t  flight 
of Tra i lb l aze r  IId. 
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(a) Tra i lb lazer  I I a .  L- 64-4744 

F'igure 22.- Photographs of t h e  reent ry  taken from Coquina Beach, N.C. 
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(b)  T r a i l b l a z e r  ID. 

Figure 22.- Continued. 



(c)  Trailblazer IId.  

Figure 22. - Concluded. 
L- 64-4746 
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